A brake test for an automobile is conducted. During the brake test, the automobile of mass 1800 kg (including driver) is travelling at the speed of 110 km/hr as it passes point A, and the car descends a hill of 1 in 2 (Sine). The driver applies brakes so as to bring the car speed at B to 50 km/hr. The total frictional resistance to motion is 235 N. Using Work-Energy Method, Calculate the following required to bring the car to 50 km/hr from 110 km/hr in 210 m (From Point A to Point B) B Determine the Value of Total Energy about Point A TEa= Determine the Value of Total Energy about Point B TEb= Determine the Value of Breaking Force needed Fb= N A

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter7: Dry Friction
Section: Chapter Questions
Problem 7.73P: The normal pressure acting on the disk of the sander is given by p=(4/3)+(r2/6), where p is the...
icon
Related questions
icon
Concept explainers
Question
A brake test for an automobile is conducted. During the brake test, the automobile of mass 1800 kg (including
driver) is travelling at the speed of 110 km/hr as it passes point A, and the car descends a hill of 1in 2 (Sine). The
driver applies brakes so as to bring the car speed at B to 50 km/hr. The total frictional resistance to motion is
235 N.
Using Work-Energy Method, Calculate the following required to bring the car to 50 km/hr from 110 km/hr in
210 m (From Point A to Point B)
B
Determine the Value of Total Energy about Point A TE=
Determine the Value of Total Energy about Point B TEb=
Determine the Value of Breaking Force needed Fb=
N
A
Transcribed Image Text:A brake test for an automobile is conducted. During the brake test, the automobile of mass 1800 kg (including driver) is travelling at the speed of 110 km/hr as it passes point A, and the car descends a hill of 1in 2 (Sine). The driver applies brakes so as to bring the car speed at B to 50 km/hr. The total frictional resistance to motion is 235 N. Using Work-Energy Method, Calculate the following required to bring the car to 50 km/hr from 110 km/hr in 210 m (From Point A to Point B) B Determine the Value of Total Energy about Point A TE= Determine the Value of Total Energy about Point B TEb= Determine the Value of Breaking Force needed Fb= N A
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Forming and Shaping
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L