The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m. (1) If the mass center G is set as the origin (datum), the gravitational

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter5: Three-dimensional Equilibrium
Section: Chapter Questions
Problem 5.2P: Draw the FBD for the bar described in Prob. 5.1 if the bar is homogeneous of mass 50 kg. Count the...
icon
Related questions
Question

The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m.

(1) If the mass center G is set as the origin (datum), the gravitational potential energy at the state 1 is___  (two decimal places)

(2) If the mass center G is set as the origin (datum), the gravitational potential energy at the state 2 is___  (two decimal places)

(3) The stretched spring length of the spring at the state 1 is________(m) (two decimal places)

(4) The elastic potential energy at the potion 1 is_______(N·m) (two decimal places)

(5) The stretched spring length of the spring at the state 2 is _______(m) (two decimal places)

(6) The elastic potential energy the state 2 is ___ (N·m ) (two decimal places)

(7) The instantaneous center of zero velocity (IC) is

(8) The mass moment of inertial about the mass center G is I=_________(kg·m) (two decimal places)

(9) The mass moment of inertial about the IC center is IIC =_________(kg·m) (two decimal places)

(10) The kinetic energy at the state1?________ (N·m) (two decimal places)

(11) The angular velocity at the state 2?_______(rad/s) (two decimal places)

(12) The kinetic energy at the state 2?______ (N·m) (two decimal places)

The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius
of the wheel is 0.6m. The radius of gyration KG=0.4 m. The spring's unstretched
length is Lo=1.0 m. The stiffness coefficient of the spring is k-2.0 N/m. The wheel is
released from rest at the state 1 when the angle between the spring and the
vertical direction is 0-30°. The wheel rolls without slipping and passes the position
at the state 2 when the angle is 0-0°. The spring's length at the state 2 is L2=4 m.
LLLLKI
L2
0
#
State 2
ZG
State 1
Transcribed Image Text:The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration KG=0.4 m. The spring's unstretched length is Lo=1.0 m. The stiffness coefficient of the spring is k-2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is 0-30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is 0-0°. The spring's length at the state 2 is L2=4 m. LLLLKI L2 0 # State 2 ZG State 1
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m.

(5) The stretched spring length of the spring at the state 2 is _______(m) (two decimal places)

(6) The elastic potential energy the state 2 is ___ (N·m ) (two decimal places)

(7) The instantaneous center of zero velocity (IC) is

(8) The mass moment of inertial about the mass center G is I=_________(kg·m) (two decimal places)

//
44
L2
J-
State 2
Li
State 1
datum
Transcribed Image Text:// 44 L2 J- State 2 Li State 1 datum
Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Design of Mechanical Springs
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L