Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
5th Edition
ISBN: 9780534408961
Author: Stephen T. Thornton, Jerry B. Marion
Publisher: Cengage Learning
Question
Book Icon
Chapter 3, Problem 3.41P

(a)

To determine

The general solutions x(t) for underdamped, critically damped and overdamped motion.

(b)

To determine

Plot the results for x(t)x0 as a function of ω0t in the three cases β=(12)ω0, β=ω0 and β=2ω0.

Blurred answer
Students have asked these similar questions
If a mass m is placed at the end of a spring, and if the mass is pulled downward and released, the mass-spring system will begin to oscillate. The displacement y of the mass from its resting position is given by a function of the form y = c,cos wt + c2 sin wt (1) where w is a constant that depends on spring and mass. Show that set of all functions in (1) is a vector space.
A spring/mass/dashpot system has mass 5 kg, damping constant 70 kg/sec and spring constant 845 kg/sec/sec. Express the ODE for the system in the form a"+ 2px' + wr = 0 Identify the natural (undamped) frequency of the spring: wo 3= (square Hz) Identify the parameter p: (Hz) Now assume that the system has the oscillating forcing function cos(wod) with the same frequendy as the spring's natural frequency. + 14a'+ 169a = cos(wat) Find the general solution.
The equation of motion for a damped harmonic oscillator is s(t) = Ae^(−kt) sin(ωt + δ),where A, k, ω, δ are constants. (This represents, for example, the position of springrelative to its rest position if it is restricted from freely oscillating as it normally would).(a) Find the velocity of the oscillator at any time t.(b) At what time(s) is the oscillator stopped?

Chapter 3 Solutions

Classical Dynamics of Particles and Systems

Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning